Apr 082008
 

J. Appl. Cryst. (2008), 41, 531-536.    [ doi:10.1107/S0021889808005463 ]

Librational motion within a crystal structure distorts the measured bond distances and angles from their physical values. TLS analysis of a rigid molecule or a rigid part of a molecule allows the calculation of bond-length and angle corrections. Until now, no estimate of the error on these corrections has been available. A method is presented for propagating the errors on the anisotropic displacement parameters (ADPs) to the bond-length and angle corrections which are a function of the libration tensor. The numerical significance of approximations made during the calculation is discussed.

Publisher copy: IUCr

Apr 012008
 

The Annual Meeting of the British Crystallography Association was held in York.  Contributions from Chem. Cryst. included:

Anna Collins, Richard I. Cooper, Andrew R. Cowley, David J. Watkin
2-(1-Hydroxy-2-methyl-propyl)-2,5-dihydro-furan-2-carboxylic acid diisopropylamide:  A study of a phase transition to a pseudosymmetrical Z′=2 structure (Poster)

James Haestier, Mustapha. Sadki, Amber L. Thompson and David J. Watkin
Cell Parameter Standard Uncertainties and their Effect on Crystallographic Data (Poster)

Mustapha Sadki, James Haestier, Amber L. Thompson & David J. Watkin
Computational Infrastructure for Bridging the Gap between Previous and Future Generations of Crystallographers (Poster)