Richard Cooper

Mar 162011
 

Richard is the Head of the Chemical Crystallography. His interests are in developing better ways of modelling diffraction experiments and using databases of crystal structure information to derive chemical and crystallographic knowledge.
Outside the confines of the department Richard “enjoys” running and learns karate. He is enthusiastic about cycling, but only for commuting – never for fun.

Departmental research guide.

Telephone: +44/(0) 1865 275963.

Dec 072010
 

Acta Cryst. (2011), A67, 21-34.    [ doi:10.1107/S010876731004287X ]

The practical use of the average and difference intensities of Friedel opposites at different stages of structure analysis has been investigated. It is shown how these values may be properly and practically used at the stage of space-group determination. At the stage of least-squares refinement, it is shown that increasing the weight of the difference intensities does not improve their fit to the model. The correct form of the coefficients for a difference electron-density calculation is given. In the process of structure validation, it is further shown that plots of the observed and model difference intensities provide an objective method to evaluate the fit of the data to the model and to reveal insufficiencies in the intensity measurements. As a further tool for the validation of structure determinations, the use of the Patterson functions of the average and difference intensities has been investigated and their clear advantage demonstrated.

Electronic reprints

Publisher’s copy

Nov 272010
 

J. Appl. Cryst. (2011), 44, 52-59.    [ doi:10.1107/S0021889810042470 ]

One of the requirements for the next generation of small-molecule crystallographers is a mathematical programming infrastructure. It should provide a modelling design process, where the model formulation is kept separate from the optimization process to provide gains in reliability, scalability and extensibility, enabling the application of optimization components in general, and refinement-based applications in particular, as applied to crystallographic problems. A research project has been undertaken to design and implement an innovative toolkit library – a small-molecule toolkit (SMTK) – for crystallographic modelling and refinement. This paper provides an overview of SMTK and its object-oriented implementation. As a practical illustration, it also shows the context of use for a set of classes and discusses how the toolkit enables the user rapidly to develop, maintain and explore the full capabilities of crystallography and so create new applications. SMTK reduces the degree of effort required to construct and develop new algorithms and provides users with an easy and efficient means to test ideas, as well as to build large and maintainable models which can readily be adapted to any new situation.

Publishers copy:

Nov 172010
 

Jeremy Law, a Part II student working with Dr Nick Rees and Dr David Watkin, has won a prize for his poster entitled “Alternative Approaches to Hydrogen Atom Location in the Solid State”. He presented his work to the joint ISIS Crystallography User Group and British Crystallographic Association PCG/SCMP meeting “Current Research in Physical Crystallography”

Nov 162010
 

Congratulations to Dr David Watkin who received an award under the Oxford Teaching Awards scheme for excellence in teaching as attested by student feedback and with the support of the department. He received a certificate presented by Professor Andrew Hamilton, the Vice-Chancellor of Oxford at Rhodes House.
The Oxford Teaching Awards scheme, co-ordinated by the Oxford University Learning Institute, recognises outstanding contributions award winners have made to teaching and learning at Oxford.

Jul 312010
 

CRYSTALS v14.11 is available as a beta-test.

Many small changes in Regularise Replace thanks to a CRYSTALS workshop in Toulouse organised by Carine Duhayon and Laure Vendier.

Cif generator now properly includes esds on refined hydrogen bonds, has incrreased figure-fields for cell parameters, and appends constraint and restraint information as _iucr_ data items at end of cif.

Improved scaling of difference Pattersons – see forthcoming paper by Flack, Sadki, Thompson & Watkin.

Absolute configuration routine (based on PLATON with Ton Spek’s permission) extended to provide more diagnostics and additional data to be re-input as absolute-structure strengthening restraints (see paper by Flack et al. above).

Error tracking for “USE” files has been improved.

Collaboration with Ernesto Mesto (Dipartimento Geomineralogico – Università degli Studi di Bari) uncovered over-sights in the original 1979 code, which lost contributions when a twin component fell onto a centring absence. Difference maps with twinned data now seem to reveal hydrogen atoms very reliably.

Jul 132010
 

Cryst. Rev. (2010), 16(3), 197-230.    [ doi:10.1080/08893110903483246 ]

X-ray single crystal structure analysis has become a gold standard for the determination of molecular geometry. The reliability of the technique is a triumph for science and technology working together. The uniqueness of well-crystalline material intrigued early natural philosophers, and their examinations, followed by the discovery of the diffraction of X-rays by crystals, led to the powerful technology that we now enjoy. For about three quarters of a century molecular structure determination has been a driving force for crystallographic research, but now that the science has matured into a technology, interest is returning in trying to understand the nature of crystals themselves.

Jun 292010
 

J. Appl. Cryst. (2010), 43, 1100-1107.    [ doi:10.1107/S0021889810025598 ]

Because they scatter X-rays weakly, H atoms are often abused or neglected during structure refinement. The reasons why the H atoms should be included in the refinement and some of the consequences of mistreatment are discussed along with selected real examples demonstrating some of the features for hydrogen treatment that can be found in the software suite CRYSTALS.

Hydrogen addition in CRYSTALS

Hydrogen addition in CRYSTALS

Electronic reprints:

Publisher’s copy:

Nov 182009
 

Acta Cryst. (2009), C65, o635-o638.    [ doi:10.1107/S0108270109046952 ]

The unusual methylene aziridine 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, C9H15NO3S, was found to crystallize with two molecules in the asymmetric unit. The structure was solved in both the approximately orthogonal and the oblique settings of space group No. 14, viz. P21/n and P21/c, respectively. A comparison of these results clearly displayed an increase in the correlation between coordinates in the ac plane for the oblique cell. The increase in the corresponding covariances makes a significant contribution to the standard uncertainties of derived parameters, e.g. bond lengths. Since there is yet no CIF definition for the full variance-covariance matrix, there are clear advantages to reporting the structure in the nonstandard space-group setting.

Publisher’s copy: IUCr

Oct 222009
 

Acta Cryst. (2009), E65, o2904-o2905.    [ doi:10.1107/S1600536809043827 ]

X-ray crystallographic analysis of the title hydrobromide salt, C10H20N+Br-, of (1R,2S,3R,5R,8aR)-3-hydroxymethyl-5- methyloctahydroindolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxylated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae) leaves.

Electronic reprint:

Publisher’s copy: