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Chiral Counterions and BINOL
• Chiral counterions have received increasing attention from the asymmetric catalysis community in recent years.1

• BINOL (1) is axially chiral;  the chiral backbone of BINOL is stereochemically stable (atropos) and the 
enantiomers can be readily resolved.2

• As one of the the most extensively used motifs in the creation of chiral anions, some high-profile applications of 
BINOL-based chiral phosphates in asymmetric catalysis have been demonstrated.3,4

• The bis-BINOL borate (2), initially introduced by Periasamy for the purpose of resolving amino alcohol 
derivatives,4 has been studied less extensively in the asymmetric catalysis context.5

• The synthesis of bis-BINOL borates from racemic BINOL can yield the homochiral (R,R)ax and (S,S)ax or the 
heterochiral (R,S)ax diastereomers.

• Recent studies of bis-BINOL or bis-biphenol borates by Wuest and co-workers (2 & 3 respectively) have 
demonstrated that both form homochiral anions upon crystallisation from a racemic solution in the presence 
of various amines as well as other counterions.6

• As part of a project designed to study chiral ion pairs of relevance to asymmetric catalysis,7 homochiral
racemates of various substituted bis-BINOL borates with sodium as counterion were required.  

• A series of racemic or stereochemically labile chiral borate anions based on the 2,2’-biphenol motif was 
investigated.8

Homochiral vs. Heterochiral
• In the homochiral borate structures the sodium was coordinated by 

the borate oxygen atoms and THF/water.

• Since a similar binding mode in the heterochiral species would be 
more sterically hindered (right), it was thought this could be key 
to the chiral selection.

• DFT analysis of the borate anion formed from 3,3’-diiodo-2,2’-biphenol 
predicted a thermodynamic preference for the heterochiral anion by 4.2 kcal/mol.  

• This was not seen in the crystal structure of the the sodium 18,6-crown complex.

• The DFT structure predicts an approximately D2-symmetric form of the 
homochiral anion, but this leads to close I···I interactions.  In order to avoid 
these, the borate distorts to yield a C2-symmetric form in the solid state (torsion angles shown below). The 
adjacent charged counterion, a dimeric sodium-crown ether pair, may well contribute to stabilising the alternative 
form, thus the DFT derived predictions can only be used as a guide.

• Although we did not observe a heterochiral borate, the recent report9 of a heterochiral aluminate suggests 
that a heterochiral borate may be accessible with sufficient steric bulk at the 3,3’-position, however it is 
unclear what influence the increased radius of the aluminium may have had in the preparation of this material.

Tropos Borates
• All three atropos borate structures consisted of the sodium cation coordinated by two of the borate oxygen atoms 

on one face and THF/water on the other.  If this structure reflected the solution behaviour the sodium could be 
key to the formation of the homochiral species.  

• The tropos analogue of bis-BINOL, bis-biphenol (3) was used to prepare the sodium salt of the borate and 
crystals were grown from THF and diethylether.

• An excess of 18,6-crown ether was also used to “capture” the sodium cation and disrupt the structure.

• Three structures were observed:  sodium coordinated by the borate and THF (as before); a sodium-borate 
polymer (below left), and a sodium-crown ether complex with the 
uncoordinated borate counterion (below right).

• In all three cases the borates were homochiral.

• A similar sodium-borate polymer was observed with the bis-3-iodo-2,2’-biphenol borate, in this case forming 
helices (below) which crystallised as a conglomerate, the only borate to do so in this study.

Atropos Borates
• When two equivalents of rac-BINOL were subjected to the condensation reaction with NaB(OMe)4, a single 

compound was obtained.

• NMR indicated it was the racemate of the sodium salt of 2
with each anion being homochiral i.e. containing (R,R)ax and 
(S,S)ax rather than the heterochiral, (R,S)ax and (S,R)ax. 

• The yield was greater than 90%, demonstrating 
diastereoselection in favour of the homochiral species.

• An analogous result was obtained for the 6,6’-dimethyl BINOL 
and the crystal structure of the salt was determined (right).

• DFT calculations were carried out on the homochiral and the heterochiral bis-BINOL-borate anions, but at the 
isolated anion level, thermodynamic differentiation was essentially negligible (0.4 kcal/mol in favour of the 
heterochiral diastereomer).

• The shape of the homo- and heterochiral species were very different (below).  This suggested that increasing 
the steric bulk at the 3,3’-BINOL positions should lead to the preferential formation of the heterochiral species.

• DFT calculations identified 3,3’-diiodo-2,2’-binaphthol and 9,9’-biphenanthrol as suitable precursors with a 
substantial thermodynamic preference for the heterochiral anion (4.9 and 3.2 kcal/mol, respectively).

• Single crystal structures of the sodium salts gave the homochiral species and solution NMR of the single 
crystals confirmed these were representative of the bulk.
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Uncoordinated, undistorted 
bis-BINOL-borate

(from the 18,6-crown ether 
complex shown left)

DFT  optimised structure of 
bis-3,3’-diiodo-2,2’-biphenyl borate 

showing  the approximate D2 symmetry

Experimentally observed structure of 
bis-3,3’-diiodo-2,2’-biphenyl borate 

showing  the approximate C2 symmetry
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