
CHEMICAL STRUCTURE MATCHING - AN IMPROVED ALGORITHM
 Part of Age Concern,

 a joint project between

Feature Detection currently under development....

Graph Similarity

Our algorithm builds on an expansion *1 of the classic Ullmann algorithm *2. By
the nature of Ullmann’s method, connectivity is maintained during structure matching,
i.e. there must be the same bonding configuration between the matched atoms in one
structure and their counterpart mapped atoms in the other structure. Additionally, we
allow tailoring of this graph comparison to successfully match only ‘graph identical’
environments (i.e. same number of bonds), or ‘graph similar’ environments where the
definition of similarity is arbitrary to the implementation.

C

O

O C

O
vs

C
C

C

C

C

C

C
C

C

C
C

C

vs

Arbitrary Mappings

C

H

H

H

C

H

H

H
vs

Our algorithm purposefully does not consider any spatial information during its
search, and instead relies solely on connectivity to match components of our two
structures. One consequence of this is that entirely equivalent matches will be
generated between the environments of two matched atoms, if one environment
contains more than one atom which is chemically identical or similar to the atoms in
the first environment. We handle these so-called ‘arbitrary mappings’ by clustering
the arbitrary atoms in each structure, and associating a cluster in one structure with
the relevant cluster in the other; we then know that all mappings where each atom
in one cluster maps to one of the atoms in the other cluster are valid.

Chemical Similarity

C

H

C

F

vs

We can tailor which elements will match with which in a similar manner to tailoring our
graph matching behaviour. By specifying that only ‘chemical identical’ candidates and
environments should be considered, we limit mapping candidates to those atom pairs
where both atoms - one from each input structure - have the same element type.
Alternatively, specifying ‘chemical similar’ for candidates and environments, along with
text-described sets of ‘similar’ environments, allows us to consider equivalent those
environments with similar pharmacological e�ects, for example.

Certain moieties which exhibit high local symmetry may prolong chemical structure
matching, since many mapping permutations may be possible between two such
equivalent moieties in the input structures. One related problem is that of ‘ring
shu�ing’ - a linear carbon chain in one structure will repeatedly match with a carbon
ring (e.g. benzene) in the other structure, shu�ing round the ring by one atom to
generate each new match. Our implementation is currently able to rapidly detect all
rings present in the input structures. We are putting the �nal touches to code which
detects features described by the user (including rings), and allows more e�cient
structure matching by avoiding complications such as ring shu�ing.

N David Brown

James Haestier

Mustapha Sadki

David J Watkin

Amber L Thompson

..the Oxford team!

Input two chemical structures
in either CIF or SMILES format.

CIF CIF
+

CIF
+
O=C=O

+
O=C=OO=C=O

OR OR

STEP 1

Specify which elements should
match with which, and how each
atom’s environment should
correspond to the matched atom’s
environment for a match to be
successful.

global_options=
 [chemical_identical] # atom pairs considered for mapping must be the same element
 [chemical_similar] # ..these candidates must have chemically similar environments
 [graph_identical] #..and these environments must match elements present and
 # their frequency

STEP 2

The algorithm begins to explore
possible mappings between the
two input structures, where each
mapping is simply a set of atom
pairs, and each atom pair consists
of one atom from each input
structure. We expand each
mapping as much as possible,
exhausting one search before
beginning another (commonly
known as depth �rst search).

STEP 3

Receive results rapidly from text
report displayed upon algorithm
completion. View mappings in
human-readable text form, listed
in descending order of size. Even
better, display and cycle through
mappings in a bespoke 3D renderer,
and mouse over an atom in one
structure to highlight its mapped
counterpart in the other structure.

N
C

O N
C

O

STEP 4

Oxford and Durham Universities

Push child state onto state stack
and set it to be the current state

Is current state our
initial state?

State source/target fringe initialised
as source/target structure atoms
of degree > 1

Generate candidates - all possible
pairwise combinations between
source, target fringes where
elements match according to

Is current state candidates
set empty’?

START
INPUT: Structures ‘source’, ‘target’

Build environment map
for each atom in source,
target

Construct initial state
with empty mapping

Push initial state onto
state stack

Current state becomes
state stack top

State stack empty? Is current state marked
as ‘done’?

END
OUTPUT: Current state
mapping if it is not a

subset of a larger mapping
already found

Current state becomes state
stack top, and pop stack

Spawn child state with current
state’s mapping plus current
state next candidate inserted.

YES NO

YES

NO

YES

NO

YES

NO

Have we already explored
current state mapping?

Does added candidate

graph options?

Does added candidate

chemical options?

For each neighbour n of candidate
atom pair (s, t), is n in the mapping?

For every neighbour already in the mapping,
is the mapped counterpart atom (from
the other structure) a neighbour of the

candidate atom (s or t) from that structure?

For each element present in degree one
atoms source/target list, how many matching

atoms (according to chemical options)
are there in each list?

Is atom degree > 1?

Add atom to degree one atoms
source/target list

Add atom to current state’s
source/target fringe

Cluster matching atoms from
source/target list, and store

this pair of clusters as an
arbitrary mapping

the lone matching atoms
(there is one atom from each

structure)

YES

NO

YES

NO

NO

YES NO

YES

1 > 1

YES

NO

NO

YES

(DESCEND)

(ASCEND)

NO How many of the two atoms
in added candidate are in an

unmatched feature?

0 1

2

Is there at least one feature
containing one of our candidate atoms

which matches a feature containing the other
candidate atom, according to our

graph and chemical options?

NO

YES

For each matching pair of features,
create a new child state for each total
mapping found between the features,

adding the mapped atoms into the
child state’s mapping inherited
from current state (its parent)

Push each successive child state
onto state stack and set it to be

the current state

Procedure Flowchart

Feature D
etection

Arbitrary
MappingsReferences:

1. L.P. Cordella, P. Foggia, C. Sansone, M. Vento (2004). IEEE Trans. On Patt. Anal. & Mach. Intell., 26, 10, 1367-1372
2. J.R. Ullmann (1976). Journal of the Association for Computing Machinery, 23, 31-42 .

